УДК 621.039.562.3

РОЛЬ ОТДЕЛЬНЫХ ФАКТОРОВ В РАЗВИТИИ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС

Адамов Е.О., Доморадов А.Е., Миронов Ю.В., Никитин Ю.М., Черкашов Ю.М. (НИКИЭТ)

Непосредственно после аварии на четвертом энергоблоке Чернобыльской АЭС в НИКИЭТе и других исследовательских центрах был выполнен большой объем рас-

четных и аналитических исследований ее развития и значения отдельных факторов в этой ситуации. К этому процессу присоединились зарубежные исследовательские центры, где, в частности, для моделирования теплогидравлических процессов циркуляционного контура аварийного реактора использовали современные общеконтурные программы типа Relap 5, Retran 02 и др. [1].

За прошедшие годы некоторые программы, в частности последние версии кода Kelap 5, стали стандартным инструментом исследования безопасности реакторов в отечественных исследовательских центрах. Был выполнен также подробный физический анализ состояния реактора перед аварией, позволивший более точно оценить его физические характеристики [2] и возмущающее воздействие стержней СУЗ старой конструкции [3]. Одновреме^ад были разработаны и апробированы на некоторых задачах эффективные расчетные схемы контура многократной принудительной циркуляции (КМПЦ) РБМК, основанные на выверенной информации об его конструкционных параметрах. Успехи в этих направлениях позволяют вернуться к численному исследованию возникновения и развития аварии на более высоком информационном уровне.

В настоящей статье приводятся первые результаты такого анализа, выполненного с использованием программы Relap 5/mod 2 [4], стандартная версия которой является наиболее распространенным в зарубежной практике инструментом исследования безопасности ЯЭУ. В этом коде достаточно развитая система описания теплогидравлических процессов пароводяных потоков объединена с шестигрупповой точечной моделью кинетики реактора. Учитывая ограничения, связанные с точечным характером модели кинетики, тем не менее можно ожидать, что в условиях глобальных изменений параметров теплоносителя в реакторе такой подход способен дать достоверные оценки пороговых величин.

В статье рассматриваются две задачи: во-первых, для предаварийного состояния реактора исследуется воздействие на систему срабатывания аварийной защиты A3-5 и кратковременного ввода в зону положительной реактивности в процессе движения стержней аварийной защиты, во-вторых, изучаются последствия отключения турбогенератора и работа на выбеге двух из четырех работавших главных циркуляционных насосов (ГЦН) каждой петли.

В соответствии с логикой программы Relap 5/mod 2 контур РБМК-1000 разбивается на отдельные объемы, для каждого из которых решаются уравнения сохранения массы и энергии. Уравнениями баланса количества движения описываются другие расчетные объекты-связи, соединяющие центры соседних объемов.

В расчетной схеме моделировали две симметричные части КМПЦ. В одной петле выделялся один раздаточно-групповой коллектор, 42 топливных канала которого были распределены на пять групп эквивалентных каналов различной мощности. Схема нодализации контура и описание входящих в нее элементов приведены в работе [5].

Весь КМПЦ описывался 229 объемами и 244 связями. В это число включены также девять элементарных объемов, моделирующих газовые зазоры в графитовой кладке реактора. Для каждого тракта с топливными каналами четыре объема моделировали водяные коммуникации, девять — топливный канал и шесть — пароводяные коммуникации. В каждой половине реактора четыре ГЦН разделены на две равные группы, одна из которых работала с номинальной частотой вращения, а для другой в задаче с выбегом турбогенератора можно было задавать переменную частоту вращения.

В уравнениях кинетики, реализованных в алгоритме кода Kelap 5, эффект реактивности зависит от изменения плотности теплоносителя в каждом объеме, моделирующем активную зону, с весовым фактором, который обусловлен плотностью г,отока нейтронов и долей активной зоны, моделируемой этим объемом. В представленных расчетах использована обобщенная зависимость реактивности от плотности, полученная на основе уточненных пространственных нейтронно-физических расчетов активной зоны четвертого энергоблока Чернобыльской АЭС для его состояния непосредственно перед аварией [5] и отличающаяся от рабочих характеристик монотонным ростом реактивности при падении плотности теплоносителя. Эта зависимость была задана в качестве универсальной для каждого элементарного объема активной зоны.

Вклад в реактивность доплер-эффекта в зависимости от температуры представлен в табл. 1, коэффициент реактивности по температуре графита принимался равным 9,26 • Распределение энерговыделения по высоте активной зоны принималось асимметричным с максимумом в нижней половине зоны и коэффициентом неравномерности энерговыделения, равным 1,4.

<i>т</i> , к		7, К	
273,15	0	1000	-1,93
300	-0,101	1200	-2,31
500	-0,744	1500	-2,83
650	-1,14	1800	-3,30
800	-1,50	2000	-3,60

Таблица!. Вклад в реактивность доплер-эффекта

Одна из проблем расчетного моделирования ситуации состояла в том, что реактор непосредственно перед началом эксперимента явно находился в нестационарном состоянии как в нейтронно-физическом, так и теплогидравлическим отношении. Однако неопределенности этого состояния не допускают задания его мгновенного состояния в качестве исходного для программы типа Relap 5. Поэтому в расчетах в качестве начального задавалось устойчивое стационарное состояние с параметрами реактора, близкими к зафиксированным в момент времени, отстоящий в представленных далее расчетах на 47 с от момента аварии. При этом возникает некоторая неопределенность в задании начальных параметров, поскольку в силу нестационарности состояния энер-

Рис. 1. Изменение мощности (а), средней плотности теплоносителя (б), максимальной температ>'ры топлива (в) при мощности канала 153 (/), 126 (2), 100 68 (4), 47% (5) средней в контуре четвертого энергоблока Чернобыльской АЭС при срабатывании аварийной защиты АЗ-5 без изменения режима работы ГЦН

гоблока записанные в системе ДРЭГ параметры не удовлетворяют стационарным уравнениям баланса массы и энергии для реактора в целом. В этих условиях задачей численного анализа является по сути исследование устойчивости некой компактной области стационарных состояний, близких в некотором отношении к возмущающему воздействию различных факторов.

Анализ влияния срабатыванил аварийной защиты на дальнейшее развитие процессов проводился в предположении, что в нулевой момент времени срабатывает аварийная защита АЗ-5 при отсутствии прочих внешних воздействий на реактор. Вводимая стержнями СУЗ реактивность принималась по данным [3]. Результаты расчетов показаны на рис. 1. Ввод положительной реактивности стержнями СУЗ приводит к росту мощности реактора: на 10-й с мощность достигает максимума 810 МВт (при начальной мощности 200 МВт). В дальнейшем она уменьшается, и цепная реакция затухает. Основные параметры контура, такие, как давление в барабанах-сепараторах, расход через ГЦН, оставались без изменения. Рост мощности вызвал небольшое парообразование (5—7%) по объему в активной зоне и рост температуры топлива. Максимальная температура в центре топлива канала наибольшей мощности достигается на 12-й с и составляет 414 °С, при этом оболочка твэла и труба канала остаются в нормальном режиме охлаждения.

Во второй задаче предполагалось, что в нулевой момент времени прекращается подача пара на турбогенератор, два ГЦН каждой половины работают на выбеге турбогенератора, остальные — в номинальном режиме. Работу ГЦН на выбеге турбогенератора моделировали в исходных данных заданием кривой частоты вращения этих насосов (рис. 2), восстановленной по данным ДРЭГ. Расчетная кривая круто обрывается при снижении оборотов насосов, работающих на выбеге до 60% номинала, и далее расчеты могли быть продолжены уже с постоянной частотой вращения этой группы ГЦН, что, впрочем, не влияло на ход процесса, поскольку вскоре происходило захлопывание обратных клапанов выбегающих насосов (в хорошем согласии с реальным развитием процесса), и расход в каждой половине контура поддерживался лишь двумя нормально работающими насосами.

Расчеты проведены для трех исходных состояний реактора. В первых двух начальная мощность реактора была равна 200 МВт, в силу чего рас-

Р и с. 2. Относительная частота вращения ГЦН, работавших на выбегающем турбогенераторе

Рис.3. Изменение мощности (а), мощности в начальный период разгона (6) и реактивности (в) четвертого энергоблока Чернобыльской АЭС при начальной мощности 200 МВт

ход питательной воды задавался значительно выше, чем это было зарегистрировано ДРЭГ. В третьем варианте начальная мощность была понижена до 150 МВт, расход питательной воды — до 77,04 кг/с. Результаты расчетов приведены в табл. 2. Во всех рассмотренных вариантах за время ~ 1 мин происходит разгон реактора без воздействия положительной реактивности, вводимой стержнями СУЗ. Изменение основных параметров реактора для второго варианта показано на рис. 3—4.

Отключение турбогенератора приводит к уменьшению расхода через подключенные к нему насосы, что лишь частично компенсируется увеличением расхода через ГЦН, имеющие номинальные обороты. В результате уменьшения расхода через каналы при небольшом начальном недогреве циркуляционной воды до кипения происходят Таблица 2. Режимы с отключением от сети двух ГЦН каждой половины и их работа от выбегающего турбогенератора

Характеристика	Вариант			
10 26 10 March Parmenter and ac of	1 63	2	3	
Начальная мощность реактора, МВт	200	200	150	
Начальное давление в барабанах-сепара- торах, МПа	6,88	6,42	6,37	
Питательная вода:		CIONAL FARMAN TOMPS		
температура, °С	165	195	195	
расход, кг/с	96,54	102,722	77,04	
Момент времени; с:		при этом оболо		
захлопывания обратных клапанов на отключенных ГЦН	40,5	41	41	
повышения мощности реактора в 2 раза	43,5	43	59	
неконтролируемого разгона реактора	54	51,5	69	

Р и с. 4. Изменение расхода через нормально работавшие ГЦН (+), работавшие от выбегающего турбогенератора (X) (о), средней плотности теплоносителя в активной зоне (6) и максимальной температ>'рыг в центре топлива (в) четвертого энергоблока Чернобыльской АЭС при начальной мощности 200 МВт

Р и с. 5. Изменение мощности (о), мощности в начальный период разгона (б) и реактивности (в) четвертого энергоблока Чернобыльской АЭС при срабатывании аварийной защиты АЗ-5 и начальной мощности 200 МВт

парообразование в активной зоне и рост реактивности и мощности (см. рис. 4). С ростом мощности интенсивность парообразования нарастает, начинается рост давления в контуре, выталкивание воды из активной зоны, которое вызывает захлопывание обратных клапанов на раздаточно-групповом коллекторе, и далее процесс приобретает катастрофический характер.

340

341 АТОМНАЯ ЭНЕРГИЯ, Т. 75. ВЫП. 5, НОЯБРЬ 1993

Таким образом, проведенные на базе общеконтурной теплогидравлической программы Relap 5/moй 2 расчеты для состояния реактора, близкого к возникшему на четвертом энергоблоке Чернобыльской АЭС непосредственно перед аварией, когда активная зона заполнена водой с малым недогревом до кипения, в первом приближении показали, что срабатывание аварийной защиты само по себе не приводит к разгону реактора. В то же время работа двух из четырех ГЦН каждой половины от выбегающего турбогенератора с неуклонным уменьшением расхода может привести к развитию катастрофического процесса и без воздействия положительной реактивности от вытеснителей стержней СУЗ стагюй конструкции. Если на обусловленные выбегом турбогенератора процессы на 40-Й с после прекращения подачи пара на турбогенератор наложить воздействие от срабатывания аварийной защиты АЗ-5, то разгон реактора происходит на 46—48-й с (табл. 3). При этом можно отметить, что изменение мощности (см. рис. 5) аналогично приведенному в работе [2].

Т а б л и ц а 3. Режимы с отключением от сети двух ГЦН каждой половины и их работа от выбегающего турбогенератора с дополнительным срабатыванием А3-5

Параметр	Вариант		
	.1	2	3
Момент времени, с:		Duridoostu laita	ion an antitate of
захлопывания обратных клапанов на отключенных ГЦН	40,6	40,5	40,6
повышения мощности реактора в 2 раза	43	42,5	44
неконтролируемого разгона реактора	46	45,4	48

СПИСОК ЛИТЕРАТУРЫ

- 1. Безбатченко Н.И. и др. Моделирование аварии на ЧАЭС. Обзор по материалам зарубежной печати: Препринт ИАЭ-4629, 1991.
- Адамов Е.О., Черкашов Ю.М. Усовершенствование реактора РБМК и повышение его безопасности. В кн.: Межд. конф. «Ядерные аварии и будущее энергетики». КАЭ Франции, 15—17 апреля 1991, с. 7.
- Адамов Е.О., Вазингер В.В., Василевский В.П. и др. Оценка качественных эффектов возможных возмущений во время аварии на ЧАЭС. — В сб.: Первая Межд. рабочая группа по тяжелым авариям и их последствиям. М.: Наука, 1990, с. 48—68.
- 4.SCDAP/Relap 5/mod 2, code MANUAL. NUREG/GR-5273, EGG-2555, Idaho Falls, Sept., 1989.
- Миронов Ю.В., Никитин Ю.М., Фомичева Т.И., Доморадов А.Е. Анализ динамики РБМК-1000 при разрыве напорного коллектора на малой мощности. — Атомная энергия, 1993, т. 75, вып. 2, с. 88—92.

Поступила в Редакцию 15.07.93